A metric space connected with generalized means

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed Point Theory in $varepsilon$-connected Orthogonal Metric Space

The existence of fixed point in orthogonal metric spaces has been initiated by Eshaghi and et. al [7]. In this paper, we prove existence and uniqueness theorem of fixed point for mappings on $varepsilon$-connected orthogonal metric space. As a consequence of this, we obtain the existence and uniqueness of fixed point for analytic function of one complex variable. The paper concludes with some i...

متن کامل

Fixed point theory in generalized orthogonal metric space

In this paper, among the other things, we prove the existence and uniqueness theorem of fixed point for mappings on a generalized orthogonal metric space. As a consequence of this, we obtain the existence and uniqueness of fixed point of Cauchy problem for the first order differential equation.

متن کامل

System of fuzzy fractional differential equations in generalized metric space

In this paper, we study the existence of integral solutions of fuzzy fractional differential systems with nonlocal conditions under Caputo generalized Hukuhara derivatives. These models are considered in the framework of completegeneralized metric spaces in the sense of Perov. The novel feature of our approach is the combination of the convergentmatrix technique with Schauder fixed point princi...

متن کامل

Generalized Contraction Mapping in Probabilistic Metric Space

The probabilistic metric space as one of the important generalization of metric space was introduced by K. Menger in 1942. In this paper, we briefly discuss the historical developments of contraction mappings in probabilistic metric space with some fixed point results.

متن کامل

Solutions of Generalized Recursive Metric-Space Equations

It is well known that one can use an adaptation of the inverse-limit construction to solve recursive equations in the category of complete ultrametric spaces. We show that this construction generalizes to a large class of categories with metric-space structure on each set of morphisms: the exact nature of the objects is less important. In particular, the construction immediately applies to cate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1969

ISSN: 0021-9045

DOI: 10.1016/0021-9045(69)90041-0